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-. Summary

Deconvolution and estimation of transfer function phase and

coefficients for nonGaussian linear processes

NonGaussian linear processes are considered. It is shown that

the phase of the transfer function can be estimated under broad condi-

tions. This is not true of Gaussian linear processes and in this sense

Gaussian linear processes are atypical. The asymptotic behavior of a

phase estimate is determined. The phase estimates make use of

bispectral estimates. These ideas are applied to a problem of decon-

volution which is effective even when the transfer function is not

minimum phase. A number of computational illustrations are given.
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1. Introduction. Assume that the random variables

v, t = 0.., -1, ,,.... are independent and identically distributed with

2
mean zero, Ev t 

= 0, and variance one Ev t  1. Let (i. I be a sequence
t t 3

of real constants with

J

Consider the linear process generated by [a. and [v t

xt  a V t-j

ii
Let a(z) = i.z be the z-transform corresponding to the process fx I.j t

Then

a.( j x ej X

is called the frequency response function or transfer function. We are

concerned with the estimation of a (e - ) on the basis of observations

only on the process (x t i

The spectral density of (x t I is

A( X) la 1 ie
1T [a(ei) f 2

In the Gaussian case (when (xt is normally distributed) the full proba-

bility structure of (xt I is determined by f(M) or equivalently by the

modulus of a(ei), I a(e'i) The phase information in c(e - ) is
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ii
not identifiable in the Gaussian case.

If ((z) is a rational function

c A(z)

with A(z), B(z) polynomials

q

A(z) akz, a 04. k=0

p
Bz) kO bk k b000

the process tx t is a finite parameter autoregressive moving average

process, that is,

p q

b x *- I a kv -(2
0 jt-j = k t-k (2)

If (x t is a Gaussian process satisfying (2), then any root z. L 0 of A(z) or

B(z) can be replaced by its conjugated inverse z. 1 without changing the proba-fJ
bility structure of (x t. This follows since leix_ z01 = Iz01-2 le i x - Zo1I I

If all the roots are distinct there are 2p +q ways of specifying the roots

without changing the structure of x t I . To ensure unique determination of

the coefficients ak and b. of (2) (since there is a different specification of~J

these coefficients corresponding to each of the 2p I root specifications) in the

Gaussian case, it is the custom to assume that all the roots of A(z) and B(z)

are outside the unit circle I zI < I in the complex plane.
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However, for a nonGaussian stationary process satisfying (2) (in

which case the independent vtIs are nonGaussian) the different 2

specifications of roots mentioned above generally correspond to different

probability structures and different processes. As a simple example,

consider the moving average

xt = 6 vt - 5vt-I +v t - 2

with the roots o' A(z) 2 and 3, and the moving average

¥t = 3vt - 7vt-l + 2vt-2

having a polynomial A(z) with roots l/2 and 3. Both (x t and (y t

have the same spectral density but if the independent random sequence

[v t ) is exponentially distributed, the marginal distributions of the (x t

and fyt I sequences are different. In the problem of deconvolution where

one wishes to recover the process (v ) (assumed nonGaussian which is
t

most often the case in applications) in some sense, the proper specification

of roots (which are inside and which are outside) becomes crucial (see

Rosenblatt (1974)). There is a discussion concerning the distribution of

roots as related to prediction problems in Rosenblatt (1980).

There are results on the estimation of the coefficients a. and bk

of (2) (corresponding to roots assumed outside the unit circle) in Box and

Jenkins (1976). In the Gaussian case these are essentially equivalent

asymptotically to maximum likelihood procedures. In the nonGaussian case

the computations are carried out as if the process were Gaussian. One has

5



a least squares but not a maximum likelihood solution in the nonGaussian

case. The coefficients estimated are those corresponding to roots outside

the unit circle even though the actual structure of the process may not be

one with all the roots outside the unit circle. Thus one will typically not be

able to resolve the actual structure using these procedures in the non-

Gaussian case. Of course, if one knows the actual nonGaussian distribu-

tion of the vt , one can use the maximum likelihood estimate or an asymp-

totically equivalent procedure to estimate the coefficients in (2) even if the

roots z. are not all outside the unit circle (see Bhasawa, Feigen and3

Heyde (1975)). Higher order spectral methods discussed in the next section

do not require this knowledge. Our discussion follows that of Rosenblatt

(1980).

2. Higher order spectral method

Assume that (x t ) is a linear process (see (1)), with the independent

random variables (v ) nonGaussian and having all moments finite. Actu-

ally we only require that some cumulant y k of order k> 2 be nonzero.

Also let

J<

and assume

ac(e - i X) ,0

for all X. We will see that oL(e- i ) is essentially identifiable (as con-

trasted with the Gaussian case) if one only observes the process (x t.

6



Since the vt'Is are assumed nonGaussian with all moments finite,

there must be a cuxnulant of vs t Yk /#0 of smallest subscript k > 2. Thc

k thorder cumulant spectral density of the process (x tI is given by

* bkPl..~l - cum(x x ,.

k -I (2n) k- ig I 
3 k- I1 ~ t+jk-

k-i~k Iikl

(2rr)

Let

Then

k k

Ia(l) I k (2rr) 2 bk(O.... O)/ f(0)I

and

h(XI+ "+h(X k-l~ h( X 1+ * + X k1

k_

2i (1) k kk-

[f( X f(x k-lf(X I1 k-l1/2

7
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since

h(- =

Further

h It10) -h'())= lira 0(-) h( X) + (k- 2) h(A) -h( X +(k- 2) A) (5)

Now

h(X) = f th'(u) -h'(0) du+chX h() +c X
0

where

c = h'(0)

In particular

h(T) =h (r) +c TT

Since the a. 's are real we must have

h(rT) = k T

for some integer k. Set

h (T)[r = 8r

Then

h(r) = kr = (8 +c)TT

so that

c=k-8

The integer k cannot be determined without further assumptions since it

corresponds to reindexing or subscripting the vt's. The sign of cL(l) is

also intrinsically undecidable since one can multiply ails and vt's by (-1)

8
3- o
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without changing the observed process (x 3'. Thus, under the conditions

specified above for a nonGaussian linear process (x ', at(e- x) is

identifiable up to the integer k and the sign on the basis of observations

on [x I only and is given by
t

a(e - ) = i2f(X) 1/2expfih(X)]

with

h( X) = ffh'(u) - h'(0) du + cX (6)
0

= hI ( h (rr)

1iT

Notice that h (X) can actually be computed.

3. Phase estimation and convergence of estimates

There are many discussions concerned with the estimation of the

second order spectral density f( X) (see Anderson (197 1) or Jenkins and

Watts (1968)). We will concentrate on the estimation of h( ,). For

simplicity of discussion we will assume that the third order cumulant y

of vt is nonzero. The program in the higher order case can be carried

out in a similar manner. Equation (5) becomes

1

h'(0) - h'(X) = lim - (h( X) +h(A) - h(X+A)

when k = 3. For (4) we find that up to a sign

h(X) +h(A) - h(X+A) =arg[b 3 (%, A)

From this point on we will drop the subscript and understand that we are

9



dealing with the bispectral density b( X. p). Let nb( X. w) be an estimate

of b( X. pi) based on a sample of size n. Then an estimate of

can be given by

8 (Xj) arctan(Im. b(., ")/Re b(X L)n n nl

We note that for a complex number

z = x + iy =re i

with r jz and 8 = arctan(y/x) a principal value determination, one has

8 e x Be _

2 2 2

2 2
ex By2 4 -

r r r r

4 Therefore

*~~P 8m (X, -~ P) [(.~ Re b(%, p) Re b(k, p)n b(.p 2 n

+ Reb(,4)rm nb~j, j) -m Ib(%,~
lb(X, p)l 2-

+ o ( b( X.u) - b(X . p)) .(7)

10



Let us consider estimating

h (7T)
17h(X) =h (X)-

Set A = A(n), k6 = X , and let A = A(n) -+ 0 as n-* . Assume for con-

venience that b(0, 0) is positive. A simple modification indicated later

takes care of the case in which b(0, 0) is negative. Now

hl() = h(X) - h'(0)X

h(kA) - h(A) kA
A

k- 1

- h(jA) +h(A) - h((j+l)A)}
j=1

k-I

arg b(jA,A)
3=1

This suggests

k-I

Hn(X) =- arg nb(jA,A) (8)
j~l

as an appropriate estimate of h (). Assume that sixth moments are finite

and that bispectral estimates b(X , pa) of the type obtained by weighted
n

averages of 3r d order periodogram values (see Brillinger and Rosenblatt

4 (1967)) are employed. It has been shown in the paper just cited that if the

bispectral density is continuously differentiable up to second order and one

has a symmetric bandlimited weight function with bandwidth A, that then

11



E nb(,")- (Xu) ffuD +vD2 bXp u vduvA2 + 2 9

and

cr Ax bXj)-.f f(kI-) f( 11 2(. )dud (10)A n A 2 nw(~vd

2if A n4- as n -+ A, (n) -* 0. Here D and D represent partial derivatives

with respect to k and 4i respectively. Further estimates b(Xu ,
n

nb(X',"'). 0 X~±~~ 0 <- i' - X' , are asymnptotically uncorrelated as n -*,

if (X~,"i) and (X ,I) are distinct. Using (7) and (8) we can write

and show by employing (9) that

fX Im b(u. 0) [D 2 R
ER n(X) - o ~,01 A ebu )+2 UVRe b(u, 0)

+ CD 2Re b(u, 0)] du A
v

+f e bu, )LAD 2Imnb(u, 0) +2BD D Im b(u,0)
J0 1Ib(u,0)1 Uuv

+ CD 2 Im bMu, 0)] du A
v

iIwhere A, B, and C are the second moments of the weight function w of

the bispectral estimates

A f fu 2w(u v) du dv B =f uvw(u, v) du dv

C f v w(u, v)du dv

12



Further, by using (10) it follows that

rmin(X P)

covf (0)R(~.) 2 2 2c nv(R ( ) f (u)/ b(u, 0) 1du w (u,v) dudv. (12)

Assuming the existence of all moments and (11). one can show that Hn (X)

is asymptotically normal with mean hl(X) and variance given by (4 2). The

mean square error of R (X) is of order

2 +3
I A 3 n

-2/5 -1/5

and the optimal rate of convergence is n when A(n)- n

Assume that the bispectral density is continuously differentiable

up to third order. Further let the weight function of the estimate be band-

limited with first and second order moments zero. Such a weight function

cannot be nonnegative everywhere. Then

E b(X,u) - b(X, p) = 0( 3).
. , n

The mean square error of Rn (X) is of the order

c

4 + 2
3~ +

The optimal rate of convergence is then n 4 /7 with A(n)- n 1/7

Generally we will estimate h 1 () and hence h(X) for a whole range

of X values. The sign of b(0, 0) may not be positive. We estimate it by

noting the real part of nb(A,A). If it is negative we multiply all nb(j A , A)

13
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* 2
with a minus sign. The estimate Hn () is then given by

k-i

H n() = arg- nb(j6,6)3
n j=l

4. Computations using spectral methods

We remark on the computational aspect of phase estimation of

a (e X) and give a few illustrative examples to indicate its effectiveness.

Given a sample xt I of size n = kN, we center and normalize it so

that it has mean zero and variance one. Break up the sample into k dis-

joint subsections of equal length N so that the variance of the bispectral

estimate from each section is not too large. Then choose a grid of points

X. j in (0, 2rr), j =, A.... M, A = 217L/N. Though the symmetry condi-

tion h(X) = -h(-X) implies that one need only deal with X in (0,17), there

may be some advantage in considering X E (0, 2nT). We will comment on

this point later on. Form the bispectral estimate Nb(jA, ) of the type

discussed above with a weight function of bandwidth A from each subsection.

Average the estimates from the different subsections so as to arrive at a

final estimate b(jZ,A). A detailed discussion of this kind of algorithm can
n

be found in Helland and Lii (1981). Compute 9 (j) = arg ( b(jA,6)) + 2krT
n n

where the integer k is chosen to ensure continuity of H (iA) = Hn(X) =
n n

i-1
- =1 0(j)' f = 2,.. ,M+l (neighboring values are as close to each other

as possible). Since the upper index is 1 -I we start with I = 2. Since

h(O) = 0 one sets H n (0)=0 and estimates Hn (a) = Hn (X ) by an interpolation

between 0 and Hn(X 2 ), 2 = 2t. H (rr) is also computed by an
n

" 14
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interpolation procedure. This amounts to a complete procedure for

estimating h( X).

Since

0

= - f (e -i i)d)

0

M+ 1 
(13)

T_(1 +2) /ZTTf ( .) H exp I + k
2j=(M+ O n 3 n j H i-

and this computation can be carried out by using the fast Fourier transform.

The a k's are real numbers and so the ok's may or may not be

real. If the symmetric property of f( X) and h( X) is used and the integra-

tion is carried out from -T to TT almost real a k's will be obtained. The

imaginary part of the ak'S will only be the size of rounding errors. In

practice there is no indication of how good or bad the estimates are apart

M+I
from asymptotic results. In actual practice (j& jj=0 may not be sym-

metric about nr. If the estimates Hn (Xj) are reasonably good the estimated

1 a .'s from (13) should still be almost real. The size of the imaginary part

reflects the level of noise. When the estimates H (X) are not good the
n j

imaginary part of the ^ kIs becomes comparable to (or larger than) its real

part. This can serve as a direct indication of the quality of the estimation.

15



*If the linear process is one-sided with a finite number of parameters

one has a moving average of order q

q
x , t X 0L avt-j '  (XO 4 0

q q

We could estimate a(z) = CL.O zj by &(z) = j=O '  . In deconvolu-

tion we try to recover the process (v I. vt = x(B is the backward
t t (B) (B

shift operator so that B j x t = xJ) by computing the approximation
1

v (B) xt If all the roots of a(z) (and 0(z)) are outside the unit circle
t-1

(the frequency function is minimum delay) then & (z) has a one-sided

expansion Z j=O C)t B . In the computation, the series is truncated after a

certain number of terms. If some of the roots of &(z) have modulus less

than one we can still expand (- (B) with a Laurent series expansion. Once

the roots of &^(z) are computed, one can easily get the Laurent series

4>expansion of &'(B) by partial fractions as described in Rosenblatt (1974)

or Henrici (1974).

Another way to find the inverse weights in deconvolution is to use

a least squares criterion as described in Wiggins (1978). Another general

method of deconvolution will be mentioned in the section on computation.

16



5. Other possible computational methods

We briefly discuss two other possible mehods of estimating the

coefficients of a nonGaussian moving average process of order q

q

xt= C0 xj (14)
j:% -

As noted earlier, second order moments will not allow us to determine the

location of the roots of

q

a(z) = > CL.z (15)

j=0 J

Higher order moments will be used in the first method which makes use of

a least squares procedure. Assume Ev t 
= 0, Ev - y 4 0. Considert t

2
c Ex x2ck txt+k

(16)
= y a a k  -- k-q#,-q+l ... #q

I j+k

Estimate ck by

n
A 1 ' 2c xtxkn k=1 t t+k

and solve the extremal problem

q 2

r(inck 2a- y  a, a2 (17)a, =- k I =

There are q+ 2 unknowns a 0 , ... a and y in (17). Due to the
q

17
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homogeneity of the a..'s we have to normalize the problem appropriately;

all the aL.'s can be multiplied by a constant c / 0 and y can be divided by
<I

c without changing (17). There are a number of ways of carrying out such

3
a normalization. One could set Ev y = I. Alternatively a 0 = 1 could!t

be the normalization condition. Some comments on the asymptotic distribu-

tion of the kIs are given in Appendix Z.

The second method is a searching procedure. One uses a typical

second order method to estimate the roots of a(z), r.,j = ,... ,q, assuming3

all the roots have modulus greater than one. An accurate estimate of the

distribution of roots is obtained by taking the conjugated inverse of an

appropriate number of the r.'s. Suppose all of the r. Is are real and dis-3 J

tinct. Then there are 2 q possible sets of roots that give the same second

order structure. Each of these sets yields a distinct set of &.Is which in3

turn lead to a distinct set of the c ks. Choose the set of .s which deter-

* mine the set of c ks minimizing

q -q ('k 2k
(ck -c k

k =-q

among all the possible sets of ( &. 6 . If some of the roots r. are complex,J 3

the inverse complex conjugates are taken in pairs. If there are multiple

roots, the solution of roots in terms of coefficients is unstable. Some com-

ments on this question are made in Appendix 1. The initial set of coeffi-

cient estimates corresponding to roots all outside the unit circle can be

obtained by the method described in Box and Jenkins (1976). Alternatively,

18



one could try to obtain the roots directly by solving for the roots of the

polynomial

p(z) = z qg(z)

where

g(z) = c(z) a(z-1

jq

with

We estimate ~.by

1 x

j n t = t t+j

The roots of p(z) with modulus greater than one are the initial set of roots.

19
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6. Examples

We will consider a few simple examples generated by Monte Carlo

simulation to illustrate the computation and to give a qualitative feeling of

* Ithe effectiveness of the theory. Details and possible "fine tuning" of the

computational method will be considered elsewhere.

We generate xt =vt + v +a v-, t=l,...,640 where
t~~ 't''t-l ' 2 t- 2

vt = vt - 1 and vt s are independent exponentially distributed random
t t

deviates with mean one obtained from the GGZEN subroutine in the inter-

national Mathematical and Statistical Library (IMSL). Then

2
Ev t  0, zs, * vt =1tt

3
Ev t =

640We partition [xt t=l into five lections, each of which has 1 28 points.

Compute the bispectrurn estimate bli 8(jAA), j = 1, 13; i = l...., 5, by

the algorithm described in Lii and Helland (1981). Here we set
11_ = 0. 442. Our final bispectrurn estimate is

5
I (i)

b6 4 0 (jA) = b128

Compute

n (j) = arg b n (jA A))

=arctan(Im b n (A.A) /Re b n(jA IA))

by taking the principal value as well as

j-l

Y0n(i), j =2,...,l4n n j n-H n(JA) -- H n(X j) 1 i , 1

i=l

20



Let H (0) H )- 0

1Hn(A)- H nk 1=- H n(X2 )

H (TT) [H (7A) + H (8A)]
n 2 n n

= I[H (3. 093) + H (3. 534)]
2 n n

and c = -H (rr)/ =- 8

n

Recall that c is an estimate of

c r h(A) = h'(0)A- 0i A

up to an integer. We will use c = h(A)/A instead of h'(0) to compare

with c in the following examples. From formula (9) we compute ak'S.

A standard smoothed periodogram with uniform weights and bandwidth A

was used to compute f n(X) as an estimate of the spectrum f(X) of (x t (f (0) is

obtained by a linear extrapolation). These examples are as follows:

Model: xt = vt + l 1 vt-I + a 2 vt- 2 with four cases spacified given below:

Coefficients Roots

Case C0 I  a r I  r 2

1 1.0 -0.833 0.167 2.0 3.0

2 1.0 -2.333 0.667 0.5 3.0

3 1.0 -3.50 1.50 2.0 0.333

4 1.0 -5.0 6.0 0.5 0.333

21



Case 1. c =1.29, 1.605

Length Argument Argument
ix Est. Argument by Sum at J Adjusted

X a. Q(e )I Length WP) -H 9~ (X) H (X) + C

0. 0. 3333 0.181 0. 0. 0. 0.

0.442 0.4194 0. 399 0.5732 0.3125 0. 0.3966

0.884 0.6509 0.617 0.8309 0.6249 0.6249 0.7933

1. 325 0.9776 1.050 0.8428 1. 3195 0.6945 0.8078

1.767 1. 3393 1.452 0.7180 0.9188 0.5994 0.9176

2.209 1.6685 1.663 0.5199 2.7462 0.8273 0.7994

2.651 1.9032 1.715 0.2830 3.5893 0.8431 0.6654

3.093 1.9990 2.241 0.0286 4.4842 0.8949 0.4795

3.534 1.9376 1.740 -0.2274 5.6009 1.1166 0.0720

3.976 1.7307 1.702 -0.4697 6.2542 0.6534 0.1277

4.418 1.4176 1.455 -0.6788 7.1482 0.8939 -0.0571

4.860 110573 1. 174 -0.8240 7.9014 0.7 532 -0. 1012

5.301 0. 7172 0.655 -0. 8502 8.1520 0.2506 0.3573

5.743 0. 4599 0.445 -0.6584 9. 3127 1.1607 -0. 0943

6.185 0.3377 0.235 -0. 1461 9. 4044 0.0917 0.5230

&a = 0. 9593, a, = -0. 5816, O 3 0. 1158

Here and from this point on all 01 k s are adjusted by sign and index shift.

22



Case 2. c -1. 388 , 0.4094

Length Argument Argument H ()A Est. Argument by Sum at J Adjusted Hn

X IcL(e'i)I Length h(M) -H ( a) 0 () H (.)+cW +(5- 1)X
_ _ _ _n n n

0. 0.6667 0.473 0.0000 0. 0. 0. 0.

0.442 0.8389 0.894 -0.6125 -0.2713 0. 0.0904 -0. 352

0.884 1. 3018 1. 315 -1,0828 -0. 5425 -0. 5425 0.1808 -0. 703

1. 325 1.9553 1.888 -1.4915 -0.4851 0.0574 -0.0575 -1. 382

1.767 2.6785 2.748 -1.8895 -0.6904 -0.2053 -0.0331 -1.80

2.209 3.3369 3.348 -2.2893 -0.6481 0.0423 -0.2563 -2.465

2.651 3.8064 3.520 -2.6920 -1.0097 -0.3615 -0.0756 -2.727

3.093 3.9980 3.809 -3.0966 -1.0884 -0.0787 -0.1778 -3.27

3.534 3.8752 3.951 -3.5014 -1.4842 -0.3958 0.0371 -3.497

3.976 3.4614 3.297 -3.9047 -1.6797 -0.1956 0.0518 -3.924

4.418 2.8351 2.802 -4.3051 -1.5538 0.1259 -0.2550 -4.693

4.860 2.1146 2.168 -4.7031 -1.8428 -0.2890 -0.1469 -5.007

5.301 1.4344 1.429 -5.1070 -1.8785 -0.0357 -0.2921 -5.593

5.743 0.9199 0.936 -5. 5558 -2. 3478 -0.4693 -0.0037 -5. 747

6.185 0.6755 0.443 -6. 1366 -2.6185 -0.2706 0.0861 -6.099

&0 = 0.7164, & 1 = -2.175 3 = 0.7605

As an indication of discretization error, notice that if we use the exact h(X) and

S(e-i ) instead of estimated ones, we get

ao0O. 9136, &1 = -2. 247, &3 0.5977
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Case 3. c =-0.613, z0.6363

Length Argument Argument '
Legh ESt. Argument by Sum at J Adjusted H nO1

I Ila(e' )I Length h (1) -H (X) e n M H n)+ ^X 4-(c

0. 1.0000 0.055 0 0 0. 0 0.

0.442 1.2583 1.280 -0.2711 0. 0062 0. 0.2749 -0. 167

0.884 1. 9527 2.505 -0. 6843 0.0125 0.0125 0.5498 -0, 334

1.325 2.9330 2. 922 -1. 1592 0.3266 0.3141 0.5168 -0. 808

1.767 4.0178 4.386 -1.6448 0.5819 0.2Z553 0.5426 -1.224

2.209 5.0054 5.272 -2. 1286 1.0098 0.4280 0. 3958 -1.813 1
2.651 5.7097 6.732 -2. 6094 1.1805 0. 1707 0.5062 -2. 145

3.093 5.9971 5.440 -3.0884 1.8244 0.6439 0. 1435 -2.95

3.534 5.8129 6.670 -3.5672 2.1738 0.3494 0.0752 -3.459

3. 976 5. 1922 5.610 -4. 0475 2.5575 0. 3836 -0. 0273 -4.003

4.418 4. 2527 4.653 -4.5306 2. 8902 0.3328 -0. 0790 -4.497

4.860 3.1720 3.040 -5.0162 2.9963 0.1061 0.0961 -4.764

5.301 2.1516 2.630 -5.4959 3.3573 0.3610 0.0161 -5.215

5.743 1. 3799 1.456 -5. 9306 3.3021 -0. 0552 0. 3525 -5. 391

6.185 1.0132 0.282 -6.2334 3.3388 0.0367 0.5970 -5.588

a0 =0.7561, &1 =3. 334, 2 1.778

24



Case.4. c -3.29, c -1.18

Argument Argument
Est. Argument by Sum by J Adjusted Hn(X)

X Ia(e-) Length h( ) -H (X) 0 P.) H (X)+CX +( -)
n n n

0. 2.0000 0.969 0 0 0. 0 0.

0.442 2.5167 2.403 -1.4567 0.0542 0. -0.5757 -1.4597

0.884 3.9053 3.837 -2.5981 0.1085 0.1085 -1.1514 -2.9194

1.325 5.8659 5.832 -3.4935 -0.5056 -0.6140 -1.0589 -3.7089

1.767 8.0356 6.112 -4.2523 -1.0588 -0.5533 -1.0270 -4.561

2.209 10.0109 9.601 -4.9377 -1.7068 -0.6480 -0.9006 -5.3186

2.651 11.4194 10. 311 -5.5844 -2.5605 -0.8537 -0.5683 -5.8903

3.093 11.9942 10.165 -6.2136 -3.2706 -0.7101 -0.3797 -6.5657

3.534 11.6258 10.822 -6.8412 -4.1459 -0.8753 -0.0259 -7.0939

3.976 10.3843 9.952 -7.4825 -4.9293 -0.7834 0.2360 -7.716

4.418 8.5055 6.902 -8.1569 -5.6188 -0.6895 0.4040 -8.432

4.860 6.3440 5. 925 -8.8953 -6.0445 -0.4257 0.3083 -9.412

5.301 4.3033 4.360 -9.7527 -6.6180 -0. 5735 0.3603 -10.242

5.743 2.7597 2.560 -10.8280 -6.7895 -0.1716 0.0104 -11.495

6.185 2.0265 0.760 -12.2239 -6.8955 -0. 1060 -0.4051 -12.775

0 -0. 9603, 1 =-3. 904, = 4.966
012

When we increase the number of parameters to four, we observe qualita-

tively the same type of result as in the three parameter ca.se. But generally

speaking, the instability is increased. We give one example: the model is

xt vt - 4 .25 vt 1 +4. 75v - 0.938v
t- t.

2 1

with roots - , - , 4.0, we get:
32
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c= -3. 688718 2 = 5

Argument Argument
A Est. Argument by Sum by J Adjusted n

cJL(e- )l Length h() -H (1) e () H ())+c c( -
n n n

0. 0.5625 0. 0. 0. 0. 0. 0.

0.442 0.9470 0.925 -1.6304 -0.3495 0. -0.4569 -1.341

0.884 2.0233 2.202 -2.6631 -0.6990 -0.6990 -0.9138 -2.682

1.325 3.7839 3.439 -3.4612 -1.1051 -0.4062 -1.3140 -3.964

1.767 6.0495 6.768 -4.1782 -2.1441 -1.0389 -1.0814 -4.615

2.209 8.3719 8.149 -4.8647 -3.2201 -1.0760 -0.8118 -5.23

2.651 10.1662 11.574 -5. 5391 -4. 0550 -0. 8349 -0.7832 -6. 085

3.093 10.9296 10.548 -6.2089 -5.0367 -0.9818 -0.6079 -6.794

3.534 10.4383 11.975 -6.8783 -6.4316 -1.3949 -0.0193 -7.087

3.976 8.8369 8.413 -7.5511 -7.2046 -0.7730 -0.0527 -8.005

4.418 6.5805 7.820 -8.2339 -8. 1175 -0.9129 0.0538 -8.782

4.860 4.2557 3.946 -8.9415 -8.8852 -0.7677 0.0152 -9.7U5

5.301 2. 3572 2.518 -9.7138 -9- 7556 -0.8704 0.0792 -10. i'

5.743 1.1270 1.160 -10.6702 -10. 0662 -0.3106 -0.4166 -11.9

6.185 0.5829 0. -12.1458 -10.7554 -0.6893 -0.5337 -12.0

= 1. 106, a -3.572, a2 =4.293, L -0.9762
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These simple examples indicate that one can estimate the unknown

coefficients reasonably well and one is able to discriminate different

models even though they have the same spectral structure. The question

of determining how many roots are inside of a unit circle can be answered

very reliably using this method. One simply takes the absolute value of an

estimate H n M + c(o) of h(W) near 2TT and divides it by 21", round-n

ing the result to its nearest integer. This integer is the winding number

given by a(e - i ) ) which gives the number of zeros of c(z) inside of a unit

circle. One can see that this is clearly the case in all these examples.

Graphs 1 through 5 compare the theoretical h(X) with the estimate

obtained by using our techniques in the five successive cases considered.

Graphs 6 through 10 are concerned with deconvolution. We consider the

moving average

x t = vt - 2.333 vt. 1 + 0. 667 vt. 2

with the vt~ s independent exponential variables with mean one. The vt's

are generated as pseudo-random variates. F(x) is the exponential distribu-

tion function with mean one. Graph 6 is a plot of the sample distribution

2function of the generated v t's and of F(x). Let ca(B) = 1 - 2. 333B +0.667 B

is obtained by truncating the exact deconvolution formula as applied to

the generated time series

9
S  a j t-ja t .(18)

j=-9

2

-- ;~A.



Graph 7 has a plot of the sample distribution function of the t' s with F(x).

The estimated model (using our bispectral techniques) is

xt = 0.7164vt - 2. 175 vtI + 0 .
7 6

0 5 vt 2

2 1
Let a(B)= 0.7164 - 2. 175B - 0.7605 B . Let vt ( xt with the same

truncation as that employed in (18). Graph 8 is a plot of the

sample distribution function of the vt with F(x). In these three graphs

a one sample 95% confidence band using the Kolmogorov-Smirnov statistic

is indicated. Graph 9 has plots of the sample distribution functions of the

ts and vts respectively. Graph 10 plots the sample distribution functions

of the v' s and the v t's. Two sample 95% confidence bands are given on

these two graphs.

A general way to find the deconvolution weights can be described

as follows. We have an estimate.

* Q(e) 4 n) expi(H (X) +.
n n

To find . (e we compute b(e i ) exp (-On(o (e-)) Then

2 ,
0

j A..l -i)
give the coefficients of series expansion of a (e-) which are the weights

desired in deconvolution. This method is general. We do not require

knowledge of the order of the moving average process and there is no

need to compute the roots from the estimated coefficients and how the

roots are distributed is irrelevant.

28
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Appendix 1

In this appendix we consider the relationship between the coeffi-

cients of a polynomial and the roots of the polynomial, at least locally.

The polynomial is

p p
I ajz = fT (z-z.)

j=0 j=l

where the roots are z.j l,...,p, and the coefficients a.j, j=O, 1,...,p,

with a 1. It is well known that
p

a z zap- 2 jk k

a = - zjzkzI

a0  1- )p  z I .. . zp

Let us consider the relationship between the differentials of the coefficients

a. and the differentials of the roots Zk_. Now

iq p

(I az I

8a

L:P7- z. -a -I8z I p-I l

30
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aap3 z a -Z2a z 2z 2

a J~k /I zjk p- 2  i'- 1 I I

1 ,...,p. Thus

da - dz.

da = -a 1  dziz. dz.

3 J

da 3 =-a 2  dz Za 1_J zidz. 1 2~ z 12 dz

and this can be written in matrix notation as

da 1  dz 1

da 

d

Cda 3  

dz3

where

-10 0 0

= - 1  -1 0 0

-Za P1 -2 0

and
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1 2 z3 .. zn
V2 2 2 2

U is a triangular nonsingular matrix and V is the Vander Monde matrix.

V is nonsingular as long as the roots z. are distinct.
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Appendix 2

The object is to remark on some aspects of the asymptotic behavior

of estimates of the ck 's in the context of a general linear process. Let

xtbe a nonGaussian linear process (1) with

2 3
Evt = t I t -Y3

cum(v 4 Y cun(v Y6

Set

2
yt xt.

For convenience we introduce

r cov(x, x )
u t t-u

Consider the estimates

N

a N Xt t+a

of EX t .t Then

N

coV-(g as g N t2~ 1 cov(xtyt+a' XT Y'r+b)

where
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t- t- +a-b + g -b t-T

+ (t' XT'~ YT +b)cum(yta

+ cun(x , x~
+crumY+ )cu (txb

+ curn(xt,
t Yt+a' XT.5 YT+b~

~'*1 Now

g=y N' 2

h Y aa + O O

Further

cum(Yt+a) a.

-]cumxt x y yOO 2Tb~ ~aa+a + k(b,t-T)

c(xtx. Yt+a)Y 4 >czj+a aJ+(T-.~ tka,-)

cunxt t+a' T* T+b~ 61 U +(t) au+a u+b+(Tt

+4l U +( -t) au+a au+b+ (T-t)) (I U U+ er-t)+b-a)
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+ 2y~ 2 (1 %L-a a~b( OL 2CL~

=k(aeb,t-T)

It is then clear that

lin N ovga 'b) ~ s s+a-b + s-b s5 +a

+ r t k(b, s) +k (a, s) ) + I k(a, b. r)

1'Under the assumption that a. I , with a truncation argument like

that employed in Anderson (1970). one can show that

f ia -ga

are asymptotically normally distributed with covariance structure given

by the preceding formula.
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